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In Brief

Single-cell RNA sequencing of the mouse
ventrolateral subdivision of the
ventromedial hypothalamus, a brain
region that contains ~4,000 neurons and
controls innate social behaviors including
aggression and mounting, reveals several
transcriptomic cell types that differ
between males and females.
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SUMMARY

The ventrolateral subdivision of the ventromedial hy-
pothalamus (VMHvI) contains ~4,000 neurons that
project to multiple targets and control innate social
behaviors including aggression and mounting. How-
ever, the number of cell types in VMHvI and their rela-
tionship to connectivity and behavioral function are
unknown. We performed single-cell RNA sequencing
using two independent platforms—SMART-seq
(~4,500 neurons) and 10x (~78,000 neurons)—and
investigated correspondence between transcrip-
tomic identity and axonal projections or behavioral
activation, respectively. Canonical correlation anal-
ysis (CCA) identified 17 transcriptomic types
(T-types), including several sexually dimorphic clus-
ters, the majority of which were validated by seq-
FISH. Immediate early gene analysis identified
T-types exhibiting preferential responses to intruder
males versus females but only rare examples of
behavior-specific activation. Unexpectedly, many
VMHUvI T-types comprise a mixed population of neu-
rons with different projection target preferences.
Overall our analysis revealed that, surprisingly, few
VMHUvI T-types exhibit a clear correspondence with
behavior-specific activation and connectivity.

INTRODUCTION

Cell types are a fundamental unit of organization and speci-
ficity in multicellular organisms. An understanding of cellular
diversity in the brain is critical for studies of neural function
and dysfunction (Jorgenson et al., 2015). Using single-cell
RNA sequencing (scRNA-seq), recent surveys have estimated
up to ~600 different transcriptomic cell types (T-types) in the
mouse brain (Saunders et al., 2018; Zeisel et al., 2018). Such
diversity immediately poses the “correspondence problem:”
how is transcriptomic heterogeneity related to other facets of
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neuronal identity, such as connectivity and physiology (Tasic,
2018; Zeng and Sanes, 2017)? While such correspondence
is well established for retinal cell types (Macosko et al.,
2015; Seung and Sumbdl, 2014), it is not yet clear whether
this principle extends to the central brain. For example, out
of over a hundred cortical T-types (Tasic et al., 2018), only
two have been shown to project to different subcortical targets
and to exert distinct functions in motor control (Economo
et al., 2018).

The hypothalamus is an evolutionarily ancient collection of
deep subcortical nuclei that control homeostatic and innate
“survival behaviors” and associated motivational states (re-
viewed in Luiten et al., 1987; Saper and Lowell, 2014; Sternson,
2013). The instinctive nature of these functions suggests they
might be controlled by specific T-types with genetically specified
connectivity. Initial scRNA-seq studies have revealed evidence
of extensive hypothalamic cell diversity (2-35 cell types/mm? tis-
sue sampled) (Campbell et al., 2017; Chen et al., 2017; Romanov
et al., 2017), but the behavioral relevance of such cell types was
not examined. A recent study of the preoptic region (POR), a
large area (~20% of total hypothalamus volume) containing
~20 distinct subdivisions (nuclei), revealed ~70 T-types (~3-4
T-types per nucleus). Multiplexed error-robust fluorescence in
situ hybridization (MERFISH) (Moffitt et al., 2016) experiments
using the immediate early gene (IEG) c-fos (Greenberg and Ziff,
1984; Morgan et al., 1987) indicated that some T-types were
preferentially activated during a particular social behavior
(Moffitt et al., 2018). However, the relationship between tran-
scriptomic identity and axonal projections (Kohl et al., 2018)
was not investigated.

The ventrolateral subdivision of the ventromedial hypothala-
mus (VMHvI) occupies ~0.5% of hypothalamus volume and
contains ~4,000 primarily glutamatergic neurons that collec-
tively control social behaviors, including aggression, as well
as metabolism (reviewed in Chen and Hong, 2018; Hashikawa
et al., 2017b; Kennedy et al., 2014; Krause and Ingraham,
2017). Calcium imaging of estrogen receptor type 1-express-
ing VMHvI (VMHVIE®™") neurons during social behavior revealed
that population activity represents intruder sex identity and
behavior (Remedios et al., 2017), while anatomic analysis
indicated that VMHvIE" neurons project to multiple (~30)
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downstream targets (Lo et al., 2019). Cellular subpopulations
in VMHvI have been identified using morphology (Millhouse,
1973a; b), molecular markers (Correa et al., 2015; Xu et al.,
2012), and bulk RNA-seq (Hashikawa et al., 2017a), but the
behavioral function and connectivity of these populations
were not established.

We have carried out scRNA-seq of VMHvI neurons at high
sampling density (2 x 10° neurons sequenced/mm? of tissue),
using two independent platforms: SMART-seq v4 (Picelli et al.,
2013) and the 10x genomics droplet-based platform (Zheng
et al., 2017). Our results identify 17 T-types in this subnucleus
alone, a density (~160 T-types/mm? tissue sampled) 3- to 68-
fold higher than reported in previous studies (Chen et al., 2017,
Mickelsen et al., 2019; Moffitt et al., 2018; Romanov et al.,
2017). Investigation of correspondence between anatomy,
behavioral activation, and projection specificity using seqFISH
(Eng et al., 2019; Shah et al., 2016), Act-seq (Wu et al., 2017),
and Retro-seq (Tasic et al., 2018) indicated that, with a few
notable exceptions, most VMHuvI T-types do not map to specific
behaviors and project to specific targets.

RESULTS

A Census of VMHvI Transcriptomic Cell Types Using
SMART-Seq

Initially, we used SMART-seq (v4, Clontech) to derive a
census for VMHuvI cell types. Because of its small size (Fig-
ure S1A) and the difficulty of manually dissecting it free from
surrounding tissue, we pre-selected for neurons in this nu-
cleus using transgenic Cre lines, fluorescent Cre-dependent
reporters, and fluorescence activated cell sorting (FACS; Fig-
ure S1B) (Tasic et al., 2016; Tasic et al., 2018). This approach
yielded ~100 cells per animal on average. We used several
Cre lines (see STAR Methods; Figures S1C-S1E); Nr5a1-Cre
was particularly useful because it afforded labeling of ~75%
of all cells in adult VMHuvI (Figures S1G and S1H; Nr5at is
transiently expressed in most VMH cells during development
but is downregulated in adult VMHvl [Cheung et al., 2013]).
We collected 4,037 cells from 48 males and 537 cells from
six females (Figure S1C) under home cage or a variety of
behavioral conditions (Figures S1D and S1E). In total, 4,574
cells were sequenced from 54 mice, of which 4,473 were neu-
rons (Figure 1C).

Clustering using the released version of scratch.hicat (Tasic
et al., 2018) yielded 46 transcriptomic “leaf” clusters, or tran-
scriptomic cell types (T-types), at the terminal hierarchical level
(Figure 1A), six of them non-neuronal and the remainder neuronal
(Figure 1C). A similar number of clusters was identified using two
other independent methods: Ward’s hierarchical clustering

(Ward, 1963) or graph-based clustering using Seurat (Butler
et al., 2018) (Figures S2D and S2E). We used differentially ex-
pressed genes (DEGs) and prior knowledge to group neuronal
T-types into several broad categories with different predicted
anatomic locations. VMH has a core-and-shell organization,
such that cells within the core are mostly glutamatergic and ex-
press Fezf1, Adcyap1, Gda, Nrgn, Cbin1, Lmo3, Nr5a1, C1ql2,
and Rreb1 (Kurrasch et al., 2007), while those in the surrounding
shell are mostly GABAergic (Choi et al., 2005; Hahn et al., 2019)
and express Gad1, Gad2, Tmem176a, Tmem176b, Six3, DIk1,
and Ecel1 (Figure 1B, upper). Only 13 of 40 neuronal T-types
(n = 611 out of 4,473) expressed Gad1, Gad2, and S/c32a1
(Vgat), reflecting the fact that our Cre driver lines were chosen
to label cells within VMH (Figures 1C, S1F, and S1G). Within
VMH, two sub-populations could be defined: those in VMHc or
anterior VMH, which expressed Nr5a1, C1ql2, Rreb1, Six3, and
Ldb2; and those in VMHuvI (Figure 1B, lower). There were few
T-types from dorso-medial VMH (VMHdm), as our microdissec-
tion procedure deliberately selected against this region (Fig-
ure S1B, yellow outline). Within VMHvI, several classes of
neurons could be identified, by expression of Esr1, DIk1 (Delta-
like homolog 1; also called Pre-adipocyte factor 1, or Pref-1),
and Satb2 (Figures 1B, S2A, and S2C). Altogether, this analysis
identified 17 different T-types predicted to be in VMHvI.

Anatomic Analysis of T-Types by seqFISH

To place the T-types identified by SMART-seq in anatomical
context with higher resolution, we performed sequential fluores-
cence in situ hybridization (seqFISH) (Eng et al., 2019; Shah et al.,
2016). We applied 58 probes comprising DEGs that marked the
different VMHvI SMART-seq clusters and carried out multiple
sequential cycles of single-molecule (sm) FISH on sections
covering multiple positions along the anterior-posterior axis (Fig-
ures 2A1 and 2G). Over 23,000 neurons were semi-automatically
segmented within four regions of interest (ROls) per section (Fig-
ure 2A2), and hybridization signals for each probe set were
counted within each cell. Segmented cells were distributed
across VMHvI, VMHdm/c, and surrounding regions (VMH-out;
Figures 2A3 and S3).

We performed independent clustering of the seqFISH data
(Figure 2B) and compared the results to the SMART-seq cluster
analysis. In general, there was a high correlation between VMHvI
SMART-seq clusters and seqFISH clusters (Figure 2C; 85.2% of
seqFISH clusters correspond to at least one SMART-seq
T-type), as well as of marker gene expression levels between
the two datasets (Figures S3F and S3G), suggesting that
transcriptomic profiles were not strongly altered by tissue disso-
ciation or FACS. In general, the anatomical locations of cells
revealed by seqFISH validated the provisional locations of

Figure 1. VMHVvI Transcriptomic Cell Types Revealed by SMART-Seq

(A) Two-dimensional t-distributed stochastic neighbor embedding (t-SNE) plot color-coded by 46 SMART-seq clusters (N = 4,574) from ventral VMH.
(B) Expression patterns of major marker genes in VMH (red dashed circle) and surrounding areas by ISH (Allen Mouse Brain Atlas; upper) arranged by anatomical
hierarchicy; orange points on t-SNE plots (lower) indicate their expression levels. Anatomic location of clusters is outlined on t-SNE plots (VMH-out: black; VMHuvI:

green; VMHc or anterior VMH: light blue).

(C) Violin plots illustrating expression levels of marker genes by cluster; “max CPM” (right), maximum counts per million reads. Dendrogram and matrix show

relatedness between clusters and their spatial locations (see B), respectively.
See also Figures S1 and S2.
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Figure 3. Anterior versus Posterior Projection Biases of Neurons in scRNA-seq Clusters

(A) Schematic of Retro-seq procedure (see STAR Methods) from dPAG, IPAG, or MPOA.

(B) Bar plot shows the distributions of cells retrogradely labeled from each target for the major VMH classes.

(C and D) Percent of retrogradely labeled cells (C) and their relative frequency compared to non-Retro-seq samples (D) in each VMHvI SMART-seq cluster.

Numbers of retro™ cells sequenced are listed at the bottom of the graphs.
*p < 0.05, **p < 0.01 (Fisher’s exact test).

SMART-seq clusters assigned by marker expression Figures 1
and S3). However, we found several cases where cells in certain
clusters “violated” cytoarchitectonic locations predicted by
marker expression: (1) a small number of GABAergic cells as-
signed to VMH-out clusters by SMART-seq was detected just in-
side the lateral border of VMHvI (Figures S3A [VMH-out], S3B,
and S3C), (2) a small number of cells assigned to VMHdm/c
(based on expression of Nr5al and C17qgl2) were found just
across the border in VMHvI (Figures S3A [VMHdm/c], S3D, and
S3E), (3) some cells assigned to VMHvI were also detected in
the adjacent VMH-out region (Figures S3A [VMHvI], S3D, and
S3E). Interestingly, cells in several of the VMHvI seqFISH clusters
exhibited different distributions along the anterior-posterior axis,
e.g., those in seqFISH cluster #11 (Esr1_2,3) were located more
posteriorly, while those in cluster #5 (Nr5a1_4,6) were located
more anteriorly (Figure 2D, lower).

Neuronal Projections of VMHvI T-Types

Classical neuroanatomical studies have indicated that VMHuvI
neurons, as a population, project to multiple (>20) brain re-
gions (Canteras et al., 1994; Saper et al., 1976). The relation-
ship between these projections and different VMHuvI cell types

is not yet clear. Recent studies using viral tracing in Esr1-Cre
mice have identified two anatomically distinct subsets of
VMHVIF" neurons that collateralize preferentially to posterior
versus anterior targets, such as the dorso-medial periaque-
ductal gray (dmPAG) versus the medial preoptic area
(MPOA), respectively (Lo et al., 2019). To examine the relation-
ship of VMHvI T-types to these projection-specific subsets, we
performed scRNA-seq following retrograde labeling from
MPOA or dorsal or lateral peri-aqueductal gray (dPAG and
IPAG, respectively) (Retro-seq; see STAR Methods; Figure 3A)
(Tasic et al., 2018).

These data revealed groups of VMH T-types with clear pro-
jection preferences. Consistent with anterograde labeling
studies (Kunwar et al.,, 2015; Oh et al.,, 2014; Wang et al,,
2015), the Nr5a1* clusters, which are located primarily in
VMHdm/c, showed a significant projection bias to the dPAG
(Figure 3B). By contrast, the Esr1* and DIk1* classes, which
are located in VMHvI, showed a significant projection bias to
the MPOA. This is not surprising, as MPOA is one of the stron-
gest projection targets of VMHvI (Canteras et al., 1994; Lo et al.,
2019; Roeling et al,, 1994; Yang et al., 2013). Surprisingly,
although retrograde labeling in Esr7-Cre mice revealed mostly

Figure 2. Anatomic Distribution of VMH scRNA-Seq Clusters by seqFISH

(A) Schematic of seqFISH procedure in VMH. Light blue solid lines (1) outline ROIls of sequential hybridizations; yellow dashed lines (2) (maximum intensity Z
projections) outline VMH and VMHvI. Three major anatomic regions (VMHvl, VMHc, and VMH-out) are color coded (3). Scale bars, 100 um (inset).

(B) Heatmap showing expression level of marker genes (rows) in 27 seqFISH clusters (columns; n = 4,497; VMHvI only).

(C) Heatmaps showing correlation between segFISH and SMART-seq clusters (n = 3,824; VMH only) and their p values (white, p > 0.05 or r < 0.35; see STAR
Methods). seqFISH clusters that are the most strongly correlated with each scRNA-seq cluster are marked by red squares.

(D) Spatial distribution along A-P axis of seqFISH clusters (color-filled) showing anterior (#3, #5, #10) or posterior (#11, #26) biases, projected onto all segmented
VMHUvI cells (a-f). Line plot shows quantification for indicated clusters; black dotted line shows chance distribution. Scale bars, 50 um (inset).

See also Figure S3.
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non-overlapping populations of MPOA- or dPAG-projecting
VMHVIES? neurons (Lo et al., 2019), most Esr1* T-types in
VMHUvI contained cells back labeled from both targets, indi-
cating a probable mixture of cells with different projections.
Nevertheless a few T-types exhibited a dPAG projection prefer-
ence (#28/Esr1_4 and #39/Dlk1_5; Figures 3C and 3D). Cluster
#31 (Nup62cl*) was specifically labeled by injections to IPAG.
Some T-types were underrepresented in the retrogradely
labeled populations and may correspond to local interneurons
or to projection biases not interrogated by our retrograde injec-
tion sites (Figure 3D, bars below dashed line).

Linking Transcriptomic Identity to Activity by Act-Seq
Electrophysiology, c-fos catFISH in situ hybridization (Lin et al.,
2011), and in vivo calcium imaging (Remedios et al., 2017)
studies have revealed that VMHvI in males contains distinct,
largely non-overlapping, populations of neurons that are active
during social interactions with males versus females. In addition,
different patterns of VMHvI neuronal activity are observed during
mating versus aggression (Falkner et al., 2014; Hashikawa et al.,
2017a; Remedios et al., 2017), as well as during social fear
(Sakurai et al., 2016; Silva et al., 2013; Wang et al., 2019). We
therefore wished to investigate how VMHvI activity during
different social behaviors is related to T-types. Attempts to
measure IEG transcript levels using SMART-seq in cells ob-
tained from animals following different social behaviors were
unsuccessful due to the low yield of cells per animal after
FACS isolation. While this work was in progress, methods for
behavioral IEG analysis using droplet-based scRNA-seq were
described (Hrvatin et al., 2018; Wu et al., 2017). In order to apply
one such method, Act-seq (Wu et al., 2017), to VMHvI, we first
characterized cellular diversity in this region using the 10x Geno-
mics droplet-based platform.

We microdissected VMHvI from acute slices, dissociated it us-
ing modified protocols designed to maximize cell viability and
number of genes detected (A.H.P. and Y.O., in preparation),
and immediately subjected the cell suspension to 10x prepara-
tion and sequencing without employing FACS. Out of 149,663
cells sequenced (n = 90 mice), 27.7% were VMH neurons
(Slc17a6*, Fezf1*, and Adcyap1*), 24.8% were non-VMH
neurons (S/c32a1*, Gad1*, and Gad2*), and 47.5% were non-
neuronal cells (Figures S4B-S4l). Higher proportions of non-
VMH neurons, compared with the SMART-seq dataset, are ex-
pected since FACS enrichment for VMH markers was omitted.

Analysis of the VMH neurons revealed 29 T-types and their
DEGs (Figures 4E and S4L). Of these, 17 clusters (including
one female-specific cluster; see below) were provisionally as-
signed based on marker expression to VMHvI (Figure 4E, red
squares) and the remainder to VMHdm/c (Figure 4E, blue
squares). Like SMART-seq, the 10x data revealed that VMHvI
neurons fell into three distinct classes defined by Esr1, Satb2,
and DIk1 (Figure 4D).

To determine how neural activation during different behaviors
maps onto 10x-derived VMHVI T-types, we repeated the 10x anal-
ysis using tissue dissected from animals ~1 h after they engaged
in one of eight different social behaviors (see STAR Methods; Fig-
ures 5A and S4l). Close investigation (Cl) was tested using in-
truders either suspended by the tail or confined in a mesh pencil

718 Cell 179, 713-728, October 17, 2019

cup. Initially, for each cluster and each behavior, we compared
the percentage of Fos™ cells and the average fold-change in Fos
expression versus control (Figure 5B). This analysis revealed
that 8 of 16 male VMHvI T-types (50%), in aggregate, displayed
a statistically significant Fos induction during the behaviors tested.
During most behaviors, one to three T-types were activated (with
the exception of social fear in single-housed males; seven
T-types), and each of those T-types was typically activated during
multiple behaviors. However, a few T-types showed more
restricted patterns of activation. For example, cluster Nup62c!'°
was activated only during social fear, while cluster DIk1_1'" was
only activated during mating (Figure 5B).

In addition to exhibiting higher Fos expression during a partic-
ular behavior in comparison with home-cage control animals,
some T-types also exhibited significant differences in Fos expres-
sion between different behaviors (Figure S5A, rows, colored
squares). For example, cluster Esri_7"% was activated to a signif-
icantly greater extent during aggression than during male-male
(M-M) CI (suspended by tail), social fear (group-housed mice),
male-female (M-F) Cl, or mating, while cluster DIk1_1'% was acti-
vated at higher levels during mating than during aggression or
M-M CI (pencil cup). Seven T-types were activated during social
fear in single-housed mice, but only three were activated during
social fear in group-housed mice (Figure 5B). This difference is
likely to reflect defensive aggression, which is initially displayed
by most single- but not group-housed mice.

Previous studies have shown that distinct, partially overlap-
ping subsets of VMHvI neurons are activated in males during
fighting versus mating, using both Fos cellular compartment
analysis of temporal activity by fluorescence in situ hybridization
(catFISH) (Lin et al., 2011) and calcium imaging of GCaMP6 ex-
pressed in Esr1-Cre mice (Remedios et al., 2017). While cluster
Esr1_7"" was activated during M-M but not M-F social interac-
tions, none of the other Esr1* clusters showed significant Fos in-
duction during mating relative to controls (Figure 5B). However,
statistical correction for multiple comparisons in this analysis
might have obscured the relatively weaker Fos induction during
mating (Lee et al., 2014) in some Esr1* clusters. To investigate
this possibility, we performed a statistical contrast between
combined M-F social interaction tests (mating and two M-F ClI
tests), M-M interaction tests (aggression and two M-M Cl tests),
and controls among the different Esr1* clusters. Because Act-
seq allows simultaneous analysis of multiple IEGs (Wu et al.,
2017), we examined Fos, Fosl2, and Junb expression. This anal-
ysis indicated that cluster Esr1_5'"% exhibited significantly
greater Fos/2 induction than cluster Esr1_7'% following M-F so-
cial interactions (Figure 5C, Fosl2, blue data points), while
conversely Esr1_7"%% showed significantly greater Fos/2 induc-
tion than cluster Esr1_5'" following M-M social interactions
(Figure 5C, red data points). Cluster Esr1_4'* was activated dur-
ing both types of interactions. Similar trends were observed for
Fos and Junb expression.

Systematic examination of 139 different IEGs (Bravo, 1990;
Wu et al., 2017) revealed different patterns of IEG activation
in different clusters during different behaviors (Figures 5D and
S5B). Cluster Esr1_7'%% exhibited activation of multiple IEGs
during aggression and M-M Cl tests, cluster DIk1_1"%* showed
the most IEGs induced during mating, and cluster Esr1_4'%%
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Figure 4. VMHvI Transcriptomic Cell Types Revealed by 10x scRNA-seq
(A and B) t-SNE plots showing clusters (A) and their Vglut2 (Slc17a6) expressions (B) for all cells analyzed (N = 149,663). All neuronal clusters (n = 78,476) are

outlined in either red (VMH-in) or blue (VMH-out), respectively.

(C) t-SNE plot illustrating results of iterative clustering of VMH-in cells (n = 41,385; 29 clusters).

(D) Expression levels of four main class-specific marker genes (Esr1, Satb2, DIk1, and Nr5aT) are color coded (orange) on t-SNE plots; VMH subdivisions are
outlined in different colors (VMHUVI: light red; VMHc or anterior VMH: light blue).

(E) Violin plots show differential expressions of marker genes (VMHvI versus VMHc-enriched; indicated by left brackets) among 29 VMH clusters (C) with their

spatial locations (top matrix).
See also Figure S4.

was activated to varying extents during all eight behaviors DEGs were almost as effective, as the entire set of annotated

(Figure 5D).

mRNAs at classifying these behaviorally relevant clusters (Fig-

We investigated next whether VMHvI T-types activated during  ure S6A), including the I-set domain-containing group of immu-
social behaviors were also distinguished by other classes of noglobulin (Ig) superfamily cell surface proteins (Figure S6B,
non-activity-dependent DEGs. Interestingly, certain classes of mean area under receiver-operator characteristic [AUROC]

Cell 179, 713-728, October 17,2019 719



Fos

A B Class DIkt
Resident-Intruder Assay el VMEW] 8 " i €
Assay (~10 min) Control None C'”j‘gfs EzEl= - BE

Aggression 3 % of Fos* Cells (10x) Z 0 oo o
Resident per cluster
sl (g';hM Igrli) & (suspended by tail) (-Control) ool
3 - 9 ® Aggression ® 0 [ )
M-M CI X .
(pencil cup) & (in pencil cup) @ 50 (dg,:;sllleg; e o
Mating 75
40-55 WEC) ? L MM Cl o
min (dahgled) Q (suspended by tail) Avg. log,FC (pencil cup)
F Mating ()
M-F Cl . ]
Act-scRNAseq : ? (in pencil cup) M-F CI
(10x) (S;;)en.mll ’:uP) (dangled) ® °®
oclal Fear
(single-housed) | & (aggresson) M-F CI
Social F (pencil cup)
ocial Fear
T d 3 (aggressor) Social Fear O
(ofeupshoused) (single-housed) ©e@®e 00O @ @
Social Fear
(group-housed) © ® )
C e Control select IEGs D = 139 IEGs e
o M-F (Cl+mating) ¢
. p<10" ¢
24 e M-M (Cl+aggression) 24 Aggression — ~5
H ¢
p< 10" 1 : 7 s
VRS 1 M-MCI | |
2 s i § (dangled) Q
° [} m ._—_- M = = |5
4 ¢ [ <
g 0f P 04 s =" M-MCl _| Ls
& et e ®E - es g tE (pencil cup) '8
| L L T T - S N T . T ST T T | T, e TR R o | . . o
Esri_ 1236547 1236547 1236547 1236547 = - - .
p<10™ &
p<10"  p<10* o Mating — 50
2 2, =
E " ' ;
8 M-F ClI g
a1 ;! 3 : (dangled) 7| °3
2z M  eseml >

w .o { 9 =0 s
8 s M-F Cl , 8
5 04 4 ] encil cup) 5 ©

L%O ...I'l - 0 ...5.‘ s (p p) g
- 0 3
Esri_ 1236547 1286547 1286547 1236547 ) y Q
19 14 . S!o%lal Fezr— —10%
o s | i L
g p<10° p<10 (single-house: )_ - i
3 ¢ T
©0.5 } 0.5 $ Social Fear
G bl L (group-housed) 7 o
35 t { 3 ,—L-_¥ - Lo
@ 0 0| L ® -
o [ s @ VMHVI [ & S — ) ©
= Eiiiii L §§§§§I Clusters }:‘ %F | EI
w - = = = =
...................... (10 TG 2 5l@ls & Bl
Esr1i_ 12836 547 1236 547 1236 547 1236 547 — -

Class NETETT Dik1

Figure 5. Activation of Neurons in VMHVvI Clusters during Different Social Behaviors

(A) Schematic of Act-seq protocol and summary of behavioral assays (see STAR Methods; Figure S4l).

(B) Dot plots illustrating Fos induction in 10x VMHUVI clusters. Colored and shaded gray dots indicate clusters with a significant (p < 0.05 after multiple comparison
corrections across behaviors and clusters; three-way ANOVA and Bonferroni post hoc test), and non-significant induction (p > 0.05) versus control (or clusters
from control animals), respectively. Dot size indicates proportion of Fos™ cells per cluster after subtraction of control values; color indicates average logofold-

change (FC) versus control.

(C) Expression levels of Fos, Fosl2, and Junb in 6 Esr1 clusters (male only). The clusters showing the highest induction of Fos, Fosl2, or Junb by either M-M
(aggression plus M-M Cl tests; red points) or M-F (mating plus M-F Cl tests; blue points) versus control (black points) are highlighted by red (left; Esr1_5) or blue
(right; Esr1_7) shading, respectively (**p < 0.01, **p < 0.001; three-way ANOVA and Bonferroni post hoc test; data are represented as mean + SEM).

(D) Bar graphs showing the number of different IEGs significantly induced during each social behavior in each cluster (see also Figure S5B) compared with control
animals, where average FC > 2 and false discovery rate (FDR) <0.05.

See also Figures S5 and S6.

curve = 0.92 + 0.05), while others including neuropeptides, Class
A orphan G protein-coupled receptors (GPCRs), and transcrip-

tion factors were less discriminating (Table S3).

Alignment of SMART-Seq and 10x Datasets by CCA

Next, we sought to determine whether there was a three-way
correspondence between T-type identity, behavioral activa-
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tion. and projection specificity. As the latter two measures
were carried out using different scRNA-seq platforms, we first
aligned the SMART-seq and 10x datasets by canonical corre-
lation analysis (CCA; Figure S7) (Butler et al., 2018; Stuart
et al.,, 2019). Co-clustering of the joint dataset revealed 31
CCA VMH-in clusters (Figure S7C). Both the 10x and
SMART-seq clusters were relatively well-aligned with the joint
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Figure 6. CCA Clusters and Sexually Dimorphic Cell Types in VMHvI

(A) Dot plots illustrating marker gene expressions in joint CCA clusters for SMART-seq (bottom) and 10x (top) datasets. Dot size and color indicate proportion of
expressing cells and average expression level in each cluster, respectively.

(B) Bar graph (left) represents the fractions of cells in clusters by sex (orange-red, female; sky blue, male). Far left, log-scaled p values (—log+op) are color coded
(Fisher’s exact test; white, p > 0.001). Violin plots show expression of genes specifically enriched in either female-specific (#3) or male-specific (#4, #5, #9) Esr1
clusters.

(C) t-SNE plots of VMH cells from males (sky blue) and females (orange-red) illustrating distribution across joint CCA clusters.

(D) Heatmap showing average expression in female VMH CCA clusters (n = 8,793) of genes previously identified by bulk RNA-seq (Hashikawa et al., 2017a) as
localized to aggression-activated (red) or mating-activated (blue) VMHvI subdivisions in females (VMHpvim versus VMHpvlI).

(E) Examples of seqFISH images (left; maximum intensity Z projections) for Pdyn and Rprm, major marker genes differentially expressed between male and
female VMHvI. Scale bars, 100 um (inset). Bar graph (right) showing spatial distribution patterns (along A-P axis) of female Esr1* and Gpc3* or male Esr1* and
Gpc3* or Esr1* and Gldn™ cells in VMHvI (****p < 0.0001; Fisher’s exact test).

(F) Violin plots showing differential expressions of 10 genes (previously identified by scRNA-seq) between female- (Esr1*/Gpc3*) and male- (Esr1*/Gpc3™* or
Esr1*/Gldn*) specific cell types in seqFISH. Log-scaled p values (—loggp) are color coded (below; unpaired t test).

See also Figure S7.

CCA clusters, with some exceptions (Figures S7D, S7E, joint CCA clusters (Figure 6A). 17 glutamatergic CCA clusters
and S7G). were predicted to be in VMHvI and the remainder in VMHdm/c,

We then computed the hierarchical relationship between and based on the expression of Fezf1, Adcyap1, Slc17a6, and
compared the expression of different marker genes amongthese  Nr5a7 (see above). We found excellent agreement between the
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Figure 7. Relationship between Behavioral Activation, Projection Specificity, and Transcriptomic Identity in the CCA Framework

(A) Bar graphs, dot plots, and heatmap illustrating Act-seq (top; Figure 5B), Retro-seq (middle; Figures 3C and 3D), and seqFISH (bottom; Figure 2D) data
projected onto VMHvI CCA clusters, respectively. Act-seq: bars with colored and gray outlines indicate significant (p < 0.05 after multiple-comparison corrections
across behaviors and clusters; three-way ANOVA and Bonferroni post hoc test), and non-significant (p > 0.05) differences in IEG expression versus control,
respectively. Filled and open bars indicate significant and non-significant differences in IEG expression versus other clusters within a given behavior or behavioral
category, respectively. All M-M and all M-F indicate combined data from all male-male or male-female social behaviors, respectively, for both Fos and Fos/2
expression. Lower bar graphs illustrate data for individual behaviors (Fos only). Retro-seq: dot size indicates the percent of retrogradely labeled VMH cells from
dPAG, IPAG, or MPOA (middle); dot colors indicate relative ratio (retrogradely labeled divided by total sequenced populations) of clusters. Shaded gray dots
indicate clusters with ratio <1). seqFISH: “Diff (A-P)” indicates percent difference in cell number between anterior versus posterior VMHuvI (color scale) for cells in
corresponding seqFISH clusters.

(B and C) Scatterplots showing correlation between preferential Fos activation during all M-M versus all M-F behaviors (x axis) and projection preference between
dPAG versus MPOA (y axis) for major Act-seq clusters (B) and correlation between preferential Fos activation during social fear (using group-housed mice) versus
control (x axis) and proportion of cells projecting to IPAG (y axis) for VMHvI CCA clusters (C).

(legend continued on next page)
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cluster markers identified by 10x versus SMART-seq (Figure 6A).
VMHUVI neurons again fell into 3 distinct subsets marked by Esr1,
Satb2, and DIk1 (Figures 6A and S7H).

Identification of Sexually Dimorphic CCA Clusters
in VMHvI
We annotated seven joint CCA clusters as “Esr1*” (Figures 6A
and S7H). One of these seven clusters, which expressed
higher levels of Esr1 than the others, was female specific
(Tsix_Esr1“"® Figures 6B, 6C [this cluster was split into two
subclusters by SMART-seq], and S7G). Conversely, clusters
Esr1_1°%A* and Esr1_2/3°CA% (Figures 6B and 6C) were strongly
enriched in males; the latter expressed Moxd1 (Figure 6B), which
encodes an enzyme expressed dimorphically in the male hypo-
thalamus (Tsuneoka et al., 2017). To validate these results, we
performed seqFISH analysis for additional markers identified
by scRNA-seq in males and females using Esr1/Gpc3 or Gldn
as reference markers (Figures 6B and 6F). The results confirmed
the differential expression of these additional markers in these
sexually dimorphic cell types and indicated a posterior bias in
the anatomic location of their cell somata (Figures 6E and 6F).
A previous study demonstrated that female VMHvI contains
two distinct subpopulations of Esr1* neurons: one, activated
during mating, is located in a subregion called VHMpuvll; the
other, activated during aggression, is located in subregion
VMHpvim (Hashikawa et al., 2017a). Marker genes for these
two anatomic subdivisions were identified using bulk RNA-seq
(Hashikawa et al., 2017a). Comparison of those marker genes
with our scRNA-seq dataset revealed that the female-specific
cluster Tsix_Esr1°“*® expressed most of the markers spatially
enriched in VMHpvll (mating region) (Figure 6D), while cells in
the Nr5a1* and DIk1™ classes expressed most of the markers en-
riched in VMHpvim (aggression region).

Relationship between Behavioral Activation, Projection
Specificity, and Transcriptomic Identity

We next sought to correlate transcriptomic phenotype, behav-
ioral function, and projection bias (Economo et al., 2018; Tasic
et al., 2018). Although it was necessary to measure projection
bias and behavioral activation using two different scRNA-seq
platforms (SMART-seq and 10x, respectively), the correspon-
dence provided by CCA (Stuart et al., 2019) allowed us to corre-
late the two phenotypic measures. Surprisingly, we did not
observe a clear 1-to-1-to-1 relationship between T-type iden-
tity, behavioral activation, and projection bias for most clusters
(Figures 7A and 7E). A rare exception was T-type Nup62cl,
which was selectively activated during social fear (in group-
housed mice), and which selectively projected to IPAG (Fig-
ure 7A, yellow), a known circuit node controlling freezing
behavior in mice (Tovote et al., 2016). Similarly, another social

fear-activated T-type, DIk1_4°CA'® also preferentially projected

to IPAG (Figure 7A). In general, there was a positive correlation
(r = 0.66) between the proportions of cells projecting to IPAG
and stronger Fos expression induced by social fear (Figures
7C and 7E).

We also correlated preferential activation during M-M versus
M-F social interactions with projection bias. A positive correla-
tion was observed between CCA T-types that were preferentially
activated during all M-M versus all M-F social interactions (e.g.,
Esr1_7°CA%; Figure 7A, all M-M), and that exhibited a relative bias
for projections to dPAG versus MPOA based on Retro-seq data
(Figure 7B; r = 0.71). By contrast, cluster Esr1_5°°A”, which ex-
hibited significantly greater Fos/2 inductions following M-F
versus M-M social interactions (Figure 7A), did not show any pro-
jection bias.

To independently investigate the relationship between social
behavior and projection bias for VMHvIE"" neurons, we per-
formed experiments combining retrograde tracing from dPAG
versus MPOA with anti-Fos immunostaining of Esr1* neurons
following aggression, mating, or M-F CI (see STAR Methods).
The results of these experiments indicated that VMHVIES cells
activated during aggression showed a significant bias for pro-
jection to dPAG versus MPOA, whereas VMHVIF" cells acti-
vated following M-F interactions showed no such bias
(Figure 7D).

These latter observations suggested that we should find a CCA
cluster preferentially activated during aggression, which con-
tained only dPAG-projecting cells; however, we did not. Cluster
Esr1_7°CA® showed strong, specific IEG activation during aggres-
sion (Figures 5D and 7A) but corresponded to a SMART-seq clus-
ter (Esr1_4 Smoc2°%) that contains dPAG- as well as MPOA-pro-
jecting cells by Retro-seq (Figure 3C). However, Esr1_4 Smoc25®
was mapped by CCA not only to Esri_7°°"° put also to
Esr1_4%C4 (Figure S7G); the latter cluster did not show any pref-
erential activation during aggression versus other social behaviors
(Figures 5D and 7A). If the dPAG-projecting and MPOA-projecting
cells in cluster Esr1_45 are indeed distinct (Lo et al., 2019), then
the dPAG projection-specific cells in that cluster could correspond
to those in the aggression-activated cluster Esr1_7°C*°, If so, then
Esr1_7°“*° might indeed represent an aggression-activated
T-type that preferentially projects to dPAG and other brainstem
structures (Lo et al., 2019). Notably, this cluster was slightly en-
riched in males versus females (Figure 6B, #9).

DISCUSSION

The hypothalamus contains ~65 nuclei or regions per hemi-
sphere (Hahn et al., 2019). Earlier scRNA-seq studies identified
~30-60 T-types in the entire hypothalamus (Chen et al., 2017;
Romanov et al., 2017). Recently, Moffitt et al. (2018) reported

(D) Bar graph showing the proportion of double® (Fos* and rHSV*) cells among VMHVIZ"" neurons between aggression versus control (upper) or M-F social
interaction tests (mating + M-F Cl tests) versus control (lower) in Esr1-Cre mice injected in dPAG or MPOA with a Cre-dependent retrograde HSV (rHSV). Numbers
of mice are listed at the bottom of the graphs. *p < 0.05, one-way ANOVA after multiple-comparison corrections (left) and unpaired t test (right).

(E) Venn diagrams (1-3) illustrating joint CCA clusters activated during different behavioral categories (all M-M, all M-F, and social fear) or projecting to dPAG and
MPOA versus IPAG, respectively. Venn diagram (4) illustrates clusters distinctively located along A-P axis in male and female VMHuvI.

(F) Summary hierarchical taxonomy of CCA T-types in VMH; cell classes are labeled at branch points of the dendrogram.

Data in (A) and (D) are represented as mean + SEM. Cl, close investigation (see Figure 5).
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~70 cell types in the POR, which contains ~20 nuclei (a density
of 3-4 cell types per nucleus). Our results reveal ~30 T-types in
VMH and 17 T-types in VMHvl alone. Similarly, ~35 T-types were
identified in the arcuate nucleus, which controls feeding and is of
comparable size to VMH (Campbell et al., 2017). These results
suggest that the total number of hypothalamic cell types has
been significantly underestimated.

Our results demonstrate good agreement between T-types
identified by the 10x and SMART-seq platforms. We identified
three major transcriptomic classes in VMHuvI. One is defined by
Esr1 (Morrell and Pfaff, 1982), the other two by DIk1/Pref-1 (Pers-
son-Augner et al., 2014) and Satb2, respectively. The Esr1*
class, which expresses the progesterone receptor (Pgr) and con-
trols social behaviors (Lee et al., 2014; Yang et al., 2013; Yang
et al., 2017), contains seven different T-types, while the DIk71*
class contains six. Three Satb2 T-types and Nup62cl comprise
the remaining clusters. While we identified some VMHdm/c
T-types, which contaminated our VMHvI dissection and which
include Sf1/Nr5a1* neurons, a comprehensive census of this re-
gions remains to be performed.

Using a combination of previously defined and newly discov-
ered markers, we performed seqFISH on VMHUvl in vivo. Indepen-
dent clustering of the seqFISH data confirmed the cluster diver-
sity revealed by SMART-seq and 10x—only 4 of 27 seqFISH
clusters (15%) did not map to any scRNA-seq T-types.
Several of the segFISH clusters exhibited differences in cellular
distribution along the A-P axis of VMHuvI, consistent with earlier
observations (Lo et al., 2019; Wang et al., 2019). Our results
are also suggestive of heterogeneity along the M-L axis of VMHvI
(Hashikawa et al., 2017a). Thus, some T-types appear spatially
restricted within VMHvI.

Male- and Female-Enriched Esr1* Neuronal Cell
Clusters in VMHvI

Sex-specific neurons are well established in Drosophila (Ca-
chero et al., 2010; Yu et al., 2010) and C. elegans (Liu and Stern-
berg, 1995), but have not previously been reported in mice. While
quantitative sex differences in gene expression have been
described in rodents (Xu et al., 2012), including at the single-
cell level (Welch et al., 2019), our results provide initial evidence
of sex-specific neuronal T-types in the mammalian CNS. Impor-
tantly, these sex-specific T-types are not defined simply by sex-
chromosome-encoded sexually dimorphic genes (e.g., TsxT7,
which is also expressed in most non-sexually dimorphic T-types
in females). Rather, they are defined by specific patterns of co-
variation of autosomal gene expression. scRNA-seq analysis at
high sampling density is likely to reveal more examples of such
rare, sex-specific populations in other sexually dimorphic brain
regions (Yang and Shah, 2014).

Foundational studies in the rat have shown that VMHv
neurons control sexual receptivity (lordosis) in females (Pfaff,
2017; Pfaff and Sakuma, 1979a; b) and were the first to implicate
this region and genetic marker in a social behavior. Comparison
of our data with bulk RNA-seq data (Hashikawa et al., 2017a) and
preliminary Act-seq experiments suggest that the female-spe-
cific cluster Tsix_Esr1 may be specifically activated during mat-
ing. Functional studies will be required to confirm whether this
cell type indeed controls lordosis behavior.

IEsr1
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Relationship of Transcriptomic Identity to Projection
Heterogeneity in VMHvI

Our results indicate a clear correspondence with projection bias
for groups of T-types in VMHdm/c versus those in VMHvl—the
former preferentially project to dPAG and IPAG, while the latter
project preferentially to the MPOA. This may reflect the fact
that VMHuvI controls social behaviors, many of which are also
controlled by neurons in MPOA (McHenry et al., 2017; Sano
et al., 2013; Simerly, 2002; Wei et al., 2018; Wu et al., 2014). In
contrast, VMHdm/c mainly controls anti-predator (non-social)
defensive behaviors (Kunwar et al., 2015; Silva et al., 2013;
Wang et al., 2015), although one subpopulation in this region
controls female sexual receptivity (Ishii et al., 2017).

The correspondence between projection bias and T-types
within VMHUVI is less clear. We recently identified two non-over-
lapping subpopulations of VMHvVIZ" neurons which exhibit a
strong projection bias to posterior (e.g., dPAG) versus anterior
(e.g., MPOA) targets, respectively (Lo et al., 2019). Cells from
these two subpopulations also have different cell body sizes
and are differentially distributed along the A-P axis. Surprisingly,
however, most Esr1* T-types contained neurons retrogradely
labeled from both dPAG and MPOA, indicating that a single
T-type may contain multiple projection-specific types. This
may be explained by the transient developmental expression
of genes that determine projection specificity as seen in the
Drosophila antennal lobe (Li et al., 2017). Alternatively, subtle dif-
ferences in adult gene expression between projection-specific
cells within a given T-type may not be detectable by the methods
used here.

Functional Heterogeneity among VMHvI Neurons during
Social Behaviors
VMHUvI neurons have been functionally implicated in the control
of aggression, mating, social fear and the encoding of conspe-
cific sex (reviewed in Hashikawa et al., 2017b; Kennedy et al.,
2014; Yang and Shah, 2014). In particular, optogenetic activa-
tion of VMHVI®" neurons can promote mating or aggressive
behavior in both males (Lee et al., 2014) and females (Hashi-
kawa et al.,, 2017a). Our Act-seq data indicated that both
distinct and common Esr1* T-types were activated during
aggression or mating. The common types may control behav-
ioral elements shared by mating and aggression (e.g., Cl,
chasing). However, calcium imaging of VMHVIZ"" neurons indi-
cated that different populations are activated during male
versus female CI; indeed most (50%-60%) of the variance in
population activity is explained by intruder sex, with only
10% explained by behavior (Remedios et al., 2017). Consistent
with this, distinct T-types were preferentially activated following
M-M versus M-F social interactions rather than following spe-
cific behaviors. Nevertheless, we identified one Esr1* T-type
that was more strongly activated during aggression than during
other behaviors. We also identified a DIk* T-type specifically
activated during mating and several T-types specifically acti-
vated during social fear (Sakurai et al., 2016; Silva et al,,
2013; Wang et al., 2019).

A recent study of Fos activation in the POR by MERFISH
concluded that “genetically encoded circuits comprised of tran-
scriptionally distinct neuronal cell types control specific



hypothalamic functions” (Moffitt et al., 2018). The apparent dif-
ference in conclusions between that study and the present one
may reflect the higher diversity of T-types in VMHvI and/or meth-
odological differences. Alternatively, it is possible that the rela-
tionship between cell types and behavior encoding is different
for nuclei in the POR, which are largely GABAergic (Moffitt
et al.,, 2018), and VMHuvI, which is primarily glutamatergic.
Answering this question will require correlating transcriptomic
identity with activity on a millisecond time-scale, e.g., using cal-
cium imaging followed by gene-specific labeling (Lovett-Barron
et al., 2017).

Importantly, VMHvI neurons (including the Esr1* subset) also
control metabolic function (Musatov et al., 2007; Xu et al.,
2011); reviewed in Krause and Ingraham, 2017), and there is ev-
idence that Esr1* cell populations controlling reproductive
behavior and metabolism can be genetically distinguished in fe-
males (Correa et al., 2015). The relationship between the VMHvI
transcriptomic cell types described here and metabolic function
remains to be explored, although cells in the DIk1* class are
good candidates, given data implicating this gene in obesity in
mice and humans (Moon et al., 2002; Wermter et al., 2008).

Conclusion

The data presented here constitute one of the few attempts to link
transcriptomic diversity in the CNS to projection specificity and
behavioral or physiological function (see also Economo et al.,
2018). With a few rare exceptions, we generally do not observe
a clear, 1-to-1-to-1 correspondence between T-types, projection
specificity, and behavioral function. It is possible that most VMHvI
T-types reflect facets of cell identity (or cell state) distinct from
projection specificity and behavioral function. Alternatively, iden-
tifying correspondences between T-types, connectivity, and
behavioral activation may require methods with higher spatial
and temporal resolution than those employed here. Application
of such methods should be facilitated by more specific genetic
access to VMHvI subtypes using intersectional transgenic models
based on the expression of markers identified in this study.
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STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Antibodies

Goat polyclonal anti-c-fos
Donkey anti-goat, Alexa Fluor 647

Santa Cruz Biotechnology
Invitrogen

Cat# sc-52-g; RRID: AB_2629503
Cat# A-21447; RRID: AB_2535864

Bacterial and Virus Strains

rAAV2-retro-EF1a-Cre
HSV1-LS1L-EYFP

Tervo et al., 2016
MGH Vector Core

N/A
N/A

Chemicals, Peptides, and Recombinant Proteins

Pronase Sigma Cat# P6911-1G
Papain Sigma Cat# P3125-250MG
Egg White/BSA ovomucoid inhibitor Worthington Cat# OI-BSA
DNase | Thermo scientific Cat# 90083
DNase/RNase-Free Distilled Water Thermo scientific Cat# 10977-015
10X PBS Thermo scientific Cat# AM9624

DAPI Sigma Cat# D9542-10MG
BSA Thermo scientific Cat# AM2616
Actinomycin D Sigma Cat# A1410-2MG
Kynurenic acid sodium salt Abcam Cat# ab120256
L-Cysteine Sigma Cat# W326305-100G
D-(+)-Trehalose dihydrate Sigma Cat# 90210-50G
Ethylenediaminetetraacetic acid Sigma Cat# 03690-100ML
MgSOgsolution Sigma Cat# 83266-100ML-F
CaClysolution Sigma Cat# 21115-100ML
Sodium nitrite Sigma Cat# 237213-100G
Heparin sodium salt Sigma Cat# H4784-250MG
Paraformaldehyde EMS Cat# 15714-S
Sucrose, RNase & DNase Free Amresco Cat# 0335-2.5KG
Critical Commercial Assays

SMART-Seq v4 Ultra Low Input RNA Kit for Takara Cat# 634894
Sequencing

Nextera XT Index Kit V2 Set A lllumina FC-131-2001
Nextera XT DNA Library Preparation lllumina FC-131-1096
Chromium Single Cell 3’ Library & Gel Bead Kit v2 10x Genomics PN-120237
Chromium Single Cell 3’ Chip Kit v2 10x Genomics PN-120236
Chromium i7 Multiplex Kit 10x Genomics PN-120262
Experimental Models: Organisms/Strains

Mouse: Nr5a1-Cre Dhillon et al., 2006 N/A

Mouse: Oxtr-T2A-Cre Daigle et al., 2018 N/A

Mouse: Vglut2-ires-cre The Jackson Laboratory JAX: 016963
Mouse: Esr1-Cre Lee et al., 2014 N/A

Mouse: Ai14(RCL-tdTomato) Madisen et al., 2010 N/A

Mouse: Ai110(RCL-FnGF-nT) Daigle et al., 2018 N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER
Mouse: C57BL/6N Charles River N/A
Mouse: BALB/c Charles River N/A

Software and Algorithms

CellRanger v3.0.2

MATLAB Version 2017a

Rv.3.3.0

Seurat v3.0.3

scrattch.hicat

segFISH image processing code (MATLAB)

SMART-seq, 10x, and seqFISH data analysis
code code (MATLAB and R)

Prism 6

10x Genomics

MathWorks

R Foundation

Butler et al., 2018; Stuart et al., 2019
Tasic et al., 2018

Shah et al., 2016; Eng et al., 2019
This paper

GraphPad Software

http://www.10xgenomics.com/
https://www.mathworks.com
https://www.r-project.org
https://satijalab.org/seurat/
https://github.com/Alleninstitute/scrattch.hicat
N/A

N/A

https://www.graphpad.com/

ImagedJ NIH https://imagej.nih.gov/ij

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents and resources should be directed to and will be fulfilled by the Lead Contact, David J.
Anderson (wuwei@caltech.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were performed in accordance with NIH guidelines and approved by the Institutional Animal Care and Use Committee
(IACUC) at the California Institute of Technology (Caltech) and Allen Institute for Brain Science (AIBS). Animals were housed and
maintained on a reverse 12 h light-dark cycle with food and water ad libitum. For SMART-seq, the following transgenic and reporter
lines were used: Nr5a1®’* (Dhillon et al., 2006), Oxtr°®’* (Daigle et al., 2018), Vglut2°®'* (Jackson Laboratory, stock no. 016963),
Esr1€®* (Lee et al., 2014), Ai1479*(Madisen et al., 2010), and Ai110™9* (Daigle et al., 2018), and maintained on the C57BL/6 back-
ground. For 10x Act-seq and seqFISH, wild-type (WT) C57BL/6N male mice (experimental), C57BL/6N female mice (for sexual expe-
rience), and BALB/c male mice (intruders) were obtained from Charles River (Burlington, MA). We used 54 mice to collect 4,574 cells
for SMART-seq, 90 mice to collect 149,663 cells for 10x (Figures S1C-S1E and S4l), and 7 mice for seqFISH (3 mice with 58 probes
and 4 mice with 24 probes, respectively). Animals were euthanized at P50-P110 in this study. Behavior was tested during the
dark cycle.

METHOD DETAILS

Single-cell isolation, cDNA amplification and library construction for SMART-seq

We isolated fluorescently labeled single cells from the mouse brain as previously described (Tasic et al., 2016; Tasic et al., 2018).
Briefly, adult (8-12-week-old) male mice were anaesthetized with isoflurane and perfused with cold artificial cerebrospinal fluid
(ACSF) containing CaCl, (0.5 mM), glucose (25 mM), HCI (96 mM), HEPES (20 mM), MgSO, (10 mM), NaH,PO, (1.25 mM), myo-
inositol (3 mM), N-acetylcysteine (12 mM), N-methyl-d-glucamine (NMDG; 96 mM), KCI (2.5 mM), NaHCO3 (25 mM), sodium I-ascor-
bate (5 mM), sodium pyruvate (3 mM), taurine (0.01 mM), thiourea (2 mM), bubbled with carbogen gas (95% O, and 5% CO,).
The brain was sectioned at 350 um using vibratome (VT1000S, Leica Microsystems) on ice, and the regions of interest (Figure S1B)
were microdissected under a fluorescence dissecting microscope from two consecutive sections (—1.22 to —1.94 from Bregma
(Franklin and Paxinos, 2008)). For enzymatic digestion, the dissected tissues were transferred to a microcentrifuge tube and treated
with 1 mg/mL pronase (Sigma, P6911-1G) in carbogen-bubbled ACSF for ~70 min at room temperature without mixing in a closed
tube. After incubation, the pronase solution was exchanged with cold ACSF containing 1% fetal bovine serum (FBS), The tissue
pieces were dissociated into single cells by gentle trituration through Pasteur pipettes with polished tip openings of 600-um,
300-pum and 150-pum diameter. Single cells were sorted by FACS into 8-well PCR strips containing lysis buffer from SMART-Seq
v4 kit with RNase inhibitor (0.17 U/ul), immediately frozen on dry ice, and stored at —80°C. We used the SMART-Seq v4 Ultra
Low Input RNA Kit for Sequencing (Takara, 634894) to reverse transcribe poly(A) RNA and amplify full-length cDNA according to
the manufacturer’s instructions. We performed reverse transcription and cDNA amplification for 18 PCR cycles in 8-well strips, in
sets of 12-24 strips at a time. At least 1 control strip was used per amplification set, which contained 4 wells without cells and 4 wells
with 10 pg control RNA. Control RNA was either Mouse Whole Brain Total RNA (Zyagen, MR-201) or control RNA provided in the
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SMART-Seq v4 kit. All samples proceeded through Nextera XT DNA Library Preparation (lllumina, FC-131-1096) using Nextera XT
Index Kit V2 Set A (lllumina, FC-131-2001). Nextera XT DNA Library prep was performed according to manufacturer’s instructions
except that the volumes of all reagents including cDNA input were decreased to 0.4 x or 0.5 X by volume.

SMART-seq sequencing data processing and quality control

Libraries were sequenced on an lllumina HiSeq2500 platform (paired-end with read lengths of 50 nt) and lllumina sequencing reads
were aligned to GRCm38 (mm10) using a RefSeq annotation gff file retrieved from NCBI on 18 January 2016 (https://www.ncbi.nIm.
nih.gov/genome/annotation_euk/all/). Sequence alignment was performed using STAR v2.5.3 (Dobin et al., 2013) in twopass Mode.
PCR duplicates were masked and removed using STAR option ‘bamRemoveDuplicates’. Only uniquely aligned reads were used
for gene quantification. Gene counts were computed using the R GenomicAlignments package (Lawrence et al., 2013)
summarizeOverlaps function using ‘IntersectionNotEmpty’ mode for exonic and intronic regions separately. For the SMART-seq da-
taset, we only used exonic regions for gene quantification. Cells that met any one of the following criteria were removed: < 100,000
total reads, < 1,000 detected genes (CPM > 0), < 75% of reads aligned to genome, or CG dinucleotide odds ratio > 0.5.

Retro-seq sample preparation

Mice (8-12-week-old) were anaesthetized (with 2%-5% isoflurane for induction and 0.8%-2% for maintenance), and mounted on a
stereotaxic frame (David Kopf Instruments) with heating pad placed underneath. We bilaterally injected a volume of 200 nL containing
retrograde tracer viruses into dPAG, IPAG, or MPOA of using a pulled glass capillary (World Precision Instruments) by pressure in-
jection at a flow rate of 100 nL/min (Micoro4 controller, World Precision Instruments; Nanojector Il, Drummond Scientific). The com-
bination of retrogradely transported virus and mice used were as follows: 1) rAAV2-retro-EF1a-Cre (Tervo et al., 2016) in a Cre-re-
porter mouse line (AiT4™* or Ai110"9*) and 2) HSV1-LS1L-EYFP (rHSV; MGH Vector Core) in Vglut2€®* or Esr1¢m/*
(Figure S1E). Stereotactic injection coordinates of dPAG, IPAG, and MPOA were obtained from the Paxinos and Franklin atlas
(Franklin and Paxinos, 2008) (AP: —4.72, ML: + 0.12, DV: —2.0 mm for dPAG; AP: —4.48, ML: + 0.45, DV: —2.65 mm for IPAG; AP:
0.022, ML: + 0.35, DV: —5.37 mm for MPOA). After a 2-3 week viral incubation, retrogradely labeled single cells were manually
dissected from VMHUvI, isolated by FACS, and subjected to scRNA-seq using SMART-seq as described above.

Single-cell isolation, cDNA amplification and library construction for 10x scRNA-seq and Act-seq

We isolated single cells from the mouse brain as previously described (Wu et al., 2017) with some modifications. Briefly, 40-55 min
after the resident-intruder assay (see ‘Resident intruder assay’ section below), adult (8—12-week-old) resident mice (2—4 brains
collected at a time) were anaesthetized with isoflurane and transcardially perfused with cold NMDG-ACSF (adjusted to pH
7.3-7.4) containing CaCl, (0.5 mM), glucose (25 mM), HCI (92 mM), HEPES (20 mM), KCI (2.5 mM), kynurenic acid (1 mM),
MgSO, (10 mM), NaHCO3; (30 mM), NaH,PO, (1.2 mM), NMDG (92 mM), sodium L-ascorbate (5 mM), sodium pyruvate (3 mM),
thiourea (2 mM), bubbled with carbogen gas. The brain was sectioned at 350 um using vibratome (VT1000S, Leica Microsystems)
on ice, and the regions of interest were microdissected under a fluorescence dissecting microscope from two consecutive sections
(—1.22 to —1.94 from Bregma (Franklin and Paxinos, 2008)). The microdissected tissues were accumulated in a microcentrifuge tube
containing NMDG-ACSF with 30 uM actinomycin D on ice to suppress further immediate early gene (IEG) activation (Wu et al., 2017).
Thereafter the sections were transferred to a new microcentrifuge tube for papain digestion (60 U/mL, Sigma, P3125-250MG;
pre-activated at 34°C for 30 min) in Trehalose-HEPES-ACSF (adjusted to pH 7.3-7.4) containing actinomycin D (15uM), CaCl,
(2 mM), L-cysteine (2.5 mM), EDTA (0.5mM), glucose (25 mM), HEPES (20 mM), KCI (2.5 mM), kynurenic acid (1 mM), MgSO,
(2 mM), NaCl (92 mM), NaHCO3; (30 mM), NaH,PO, (1.2 mM), trehalose (2.5% w/v) and gently carbogenated. During incubation
for enzymatic digestion (~55 min at room temperature), the solution was mixed by gently pipetting a few times every 5-10 min. After
incubation, the solution was exchanged with cold Trehalose-HEPES-ACSF containing Egg White/BSA ovomucoid inhibitor (3 mg/
mL, Worthington, OI-BSA) and DNase | (25 U/mL, Thermo scientific, 90083). The tissue pieces were dissociated into single cells
by gentle, successive trituration through Pasteur pipettes with polished tip openings of 600-um, 300-pum and 150-pum diameters. After
trituration and filtering through a 40 um cell strainer, single cells were pelleted at 300 g for 5 min at 4°C, the supernatant was carefully
removed, the cells resuspended with cold Trehalose-HEPES-ACSF, and filtered through a 20 um filter. Cells were pelleted again at
300 g for 5 min at 4°C and resuspended with Resuspension-HEPES-ACSF containing BSA (0.05%), CaCl, (2 mM), glucose (25 mM),
HEPES (20 mM), KCI (2.5 mM), kynurenic acid (1 mM), MgSO,4 (1 mM), NaCl (117 mM), NaHCO3 (30 mM), NaH,PO4 (1.2 mM)
(osmolarity verified to be within 10 mOsm of Trehalose-HEPES-ACSF). After manually determining the cell concentration using a he-
mocytometer, suspensions were further diluted to desired concentrations (300-1,000 cells/pL) if necessary. The appropriate volume
of reverse transcription (RT) mix was added in order to target 6,000-10,000 cells recovered, and loaded into the chip. The Chromium
Single Cell 3’ Library & Gel Bead Kit v2 (PN- 120237), Chromium Single Cell 3’ Chip kit v2 (PN-120236), and Chromium i7 Multiplex Kit
(PN-120262) were used for all downstream RT, cDNA amplification (11 PCR cycles), and library preparation as instructed by the
manufacturer (Chromium Single Cell 3’ Reagents Kits v2 User Guide).

10x Sequencing data processing and quality control

Libraries were sequenced on an lllumina HiSeq4000 or NovaSeq6000 (paired-end with read lengths of 150 nt) and lllumina
sequencing reads were aligned to the mouse pre-mRNA reference transcriptome (mm10) using the 10x Genomics CellRanger
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pipeline (version 3.0.2) with the default parameters. The median read depth per cell was 66,319 reads, yielding 2,998/1,309 genes
(median), and 6,096/2,238 unique molecular identifier (UMI) counts (median) per neuronal/non-neuronal cell, respectively (Fig-
ure S4C, J, K). Cells that met any one of the following criteria were filtered out for downstream processing in each 10x run: < 600
detected genes (for UMI count > 0), > 30,000 UMI counts (potential multiplets), or the proportion of the UMI count attributable to mito-
chondrial genes was greater than 15%. Doublets were further removed by first classifying cells into broad cell classes (neuronal
versus non-neuronal) based on the co-expression of any pair of their marker genes (Stmn2 for neurons; Cldn5 for endothelial cells;
C1qc for microglia; Opalin for oligodendrocytes; Gja1 for astrocytes; Pdgfra for OPCs; Mustn1 for mural cells; see Figure S4A).

seqFISH data generation

seqFISH data in VMH and its surrounding area were generated using the seqFISH+ protocol with some modifications (Eng et al.,
2019). In brief, primary probes of 30-nt sequences of each gene were extracted using the exons from within the CDS region and
BLASTed against the mouse transcriptome to ensure specificity. A minimum of 15 to a maximum of 48 primary probes were designed
for each targeted gene. The number of probes per gene was dependent on the length of the CDS region. The same 15-nt readout
probes were used as in previous study (Shah et al., 2018). The reverse complements of these readout probe sequences were
included as four binding sites in the primary probes to increase signals. The final primary probes were ordered as a complex oligopool
from Twist Bioscience and were constructed as previously described (Eng et al., 2019; Shah et al., 2018).

Adult (8—-12-week-old) C57BL/6N male and female mice were perfused with perfusion buffer (10U/mL heparin, 0.5% NaNO, (w/v) in
1X PBS at 4°C). Mice were then perfused with fresh 4% paraformaldehyde (PFA; Thermo Scientific, 28908)/1X PBS buffer (Invitrogen,
AM9624). The brain was dissected and immediately placed in a 4% PFA buffer for 2 h at room temperature. The brain was then
immersed in 30% RNase-free Sucrose (Amresco, 0335) in 1X PBS for 48 h at 4°C until the brain sank to the bottom of the tube.
The brain was then embedded in OCT and cryo-sectioned (15 um thick), and 4-5 sections including VMHvI were collected per mouse
(consecutive sections were ~100 um apart along A-P axis; 20 sections in total). The sections were stored at —80°C until use.

For segFISH data acquisition, sections were prepared as described with modifications (Eng et al., 2019). In brief, sections were
permeabilized in 70% ethanol for 18 h at 4°C, and further permeabilized by the addition of RNase-free 8% SDS (Ambion,
AM9822) in 1X PBS for 15 min at room temperature. Tissue slices were then rinsed multiple times with 70% ethanol to remove
SDS. Primary probe hybridization buffer composed of 40% Formamide (Invitrogen, AM9344), 2X SSC (Invitrogen, 15557-044)
10% (w/v) Dextran Sulfate (Sigma, D8906), and ~5nM/primary probes were hybridized to the tissue slices by spreading out the hy-
bridization buffer solution with a coverslip. The hybridization was allowed to proceed for ~36 h at 37°C incubator in a humid chamber.
After primary probe hybridization, the tissue slices were washed with 40% Wash Buffer (40% WB: 2x SSC, 40% Formamide (v/v),
0.1% Triton X-100 (Sigma, D8906) at 37°C for 30 min. After rinsing with 2X SSC 3 times and 1X PBS once, the sample was subjected
to 0.1mg/mL Acryoloyl-X SE (Thermo Fisher, A20770) in 1X PBS treatment for 30 min at room temperature. Next, the tissue slices
were incubated with 4% acrylamide (1:19 crosslinking) hydrogel solution in 2X SSC for 30 min at room temperature. Then the hydro-
gel solution was aspirated and 30 pL of 4% hydrogel solution containing 0.05% APS and 0.05% TEMED in 2x SSC was dropped onto
the tissue slice and sandwiched by Gel-Slick functionalized coverslip. The samples were transferred to 4°C in a homemade nitrogen
gas chamber for 30 min before transferring to 37°C for 2.5 h to complete polymerization. After polymerization, the hydrogel
embedded tissue slices were cleared with digestion buffer as previously described (Eng et al., 2019). After digestion, the tissue slices
were rinsed with 2X SSC multiple times and subjected to 0.1mg/mL Label-X modification for 45 min at 37°C. The tissue slices were re-
embedded in hydrogel solution as in the previous step, and were gelated at 37°C incubator for 2 h for stronger stabilization before
subsequent multiple rounds of imaging. Imaging platform and automated fluidics delivery system were similar to those previously
described (Eng et al., 2019).

Each round of imaging contained the 405 channel, which included the DAPI stain of the cell. The DAPI images from all the rounds of
hybridization were aligned to the first image using a 3D phase correlation algorithm. Tissue background and auto-fluorescence were
then removed by dividing the initial background with the fluorescence images. To correct for the non-uniform background, a flat field
correction was applied by dividing the normalized background illumination with each of the fluorescence images while preserving of
the intensity profile of the fluorescent points. The background signal was then subtracted using the Imaged rolling ball background
subtraction algorithm with a radius of 3 pixels. For semi-automatic cell segmentation, images of sections stained with Nissl and DAPI
were trained with llastik (Sommer et al., 2011), an interactive supervised machine learning toolkit, to output probability maps, which
were then used in the Multicut (Beier et al., 2017) tool to produce volumetric labeled cells. The labeled cells were filtered by size and
region in MATLAB. For image analysis, potential mMRNA transcript signals were located by finding the local maxima in the processed
image above a predetermined pixel threshold. The transcript spots were assigned to the corresponding labeled cells according to
location. For more details regarding the seqFISH method, see (Shah et al., 2016).

Resident intruder assay

The resident intruder assay was performed as previously described (Hong et al., 2014; Lee et al., 2014). Briefly, all experimental male
mice (“residents”) were had been individually housed for two weeks and received sexually experience (for 1-3 days), except resi-
dents for “Social Fear” assays using group-housed (sexually naive) males. Before testing, the resident mice were pre-screened
for baseline aggression and sexual behavior using resident-intruder testing sessions (~3 times). On the experimental day, residents
were transported in their home cage to a novel behavioral testing room (under infrared light) where they acclimated for 5-15 min. An
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unfamiliar group-housed BALB/c mouse (“‘intruders’’; types of intruders listed in Figure 5A) was then placed in the home cage of the
resident, and residents were allowed to freely interact with it for ~10 min. For “M-M CI” (male-male close investigation only) and “M-F
CI” (male-female close investigation only) tests, intruders were either dangled by the tail or placed inside a wire-mesh barrier (an in-
verted pencil cup) when introduced into the resident’s home cage, so that resident behavior was restricted to investigation and not
allowed to proceed to the consummatory phases (fighting or copulation). “Control” indicates home-caged animals moved to the
behavior testing room, but not otherwise manipulated. “Plain” indicated animals taken directly from their home cage in the housing
room. In the cases of “Aggression” and “Mating,” only resident mice that were actively engaging in either aggression or sexual be-
haviors throughout the session were used for subsequent 10x scRNA-seq experiments. For “Social Fear,” experimental mice were
introduced to the home cage of singly housed male aggressors for ~10 min to allow them to be attacked (more than 10 times), and
then returned into their home cage. For female mice, sexually naive and group-housed mice were used as residents for the “Plain”
category (n = 5,935 cells from 4 mice), “Control” (n = 7,964 cells from 4 mice), or social interaction tests with male intruders (n =
12,267 cells from 8 mice; most of them were unreceptive), respectively.

Retrograde labeling with c-fos immunohistochemistry

For retrograde labeling, 200 nL of HSV-LS1L-mCherry or HSV-LS1L-EYFP (MGH Vector Core) was injected into either dPAG
or MPOA of adult Esr1°®* mice (8-12 weeks old). ~3 weeks after injections, mice were tested in resident-intruder assays (3 main
categories: male-male aggression, male-female mounting, and male-female close investigation only). 80-90 min after the resi-
dent-intruder assay, mice were euthanized via transcardiac perfusion with 4% PFA, and serial sections generated using a cryostat.
To visualize c-fos, sections were stained with goat anti-c-fos antibody (Santa Cruz Biotechnology, sc-52-g, 1:500) overnight at 4°C,
followed by Alexa-647 donkey anti-goat (Invitrogen, A-21447, 1:1000) at room temperature for 3 h. For manual quantification of fluo-
rescent cells, images were analyzed using Fiji/lImaged as follows: 1) a manually set threshold was applied (to the point that back-
ground autofluorescence was not visible), 2) watershed-based segmentation and particle analysis (“analyze particles” function)
was used for the identification of individual cells (with size and circularity limited to an appropriate range), and 3) automatic particle
counting was visually inspected for accuracy and manually adjusted.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were processed and analyzed using MATLAB, R, Prism 6, ImageJ, and Excel. The following statistical analyses were conduct-
ed: ANOVAs followed by Bonferroni post hoc tests to compare 1) the expression of Fos induced by each behavioral paradigm with
control across clusters (Figures 5B and 7A), and 2) the proportion of double™ (Fos & rHSV) cells between aggression and control in-
jected in dPAG and MPOA (Figure 7D); Fisher’s exact tests to see 1) which retrogradely labeled SMART-seq classes/clusters from a
given projection were significantly different from the proportions of retrogradely labeled cells from other projection (Figures 3B and
3C), 2) what kinds of joint CCA clusters were significantly different from the expected proportions of cells in a given sex (Figure 6B),
and 3) how differently cells from sex-specific clusters were located between anterior versus posterior VMHvI (Figure 6E); a likelihood
ratio test (McDavid et al., 2013) was used to calculate adjusted p-values (FindMarkers function in Seurat; after Bonferroni correction
using all genes in the dataset) for determining the significance values of differential IEG expression compared to controls (Figure S5B).
Unpaired t tests were used to compute p-values for 1) the differential expressions of genes in seqFISH (Figure 6F), and 2) different
proportion of double* (Fos & rHSV) cells between M-F social interaction tests (mating + M-F Cl tests) and control both in dPAG and
MPOA injections (Figure 7D). The n value and statistically significant effects are reported in each figure/figure legend. The significance
threshold was held at . = 0.05 (p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ***p < 0.0001).

SMART-seq data analysis and clustering

Data analysis for the SMART-seq dataset (including clustering, dendrogram construction and differential gene expression) was per-
formed using a pre-release version of R package scrattch.hicat (https://github.com/Alleninstitute/scrattch.hicat), as described pre-
viously (Tasic et al., 2018). In brief, all QC qualified cells were clustered using high variance gene selection, dimensionality reduction
(using default PCA mode), dimension filtering, and Jaccard-Louvain or hierarchical (Ward) clustering. This process was repeated
within each resulting cluster until no more child clusters met differential gene expression or cluster size termination criteria. The entire
clustering procedure was repeated 100 times using 80% of all cells sampled at random, and the frequency with which cells co-cluster
was used to generate a final set of clusters (Figure S2A), again subject to differential gene expression and cluster size termination
criteria. Pairwise differential gene expression was performed using the de_score function in the scrattch.hicat package based on
log>(CPM+1) values. The cell type tree was built using the build_dend function in scrattch.hicat based on cluster median expression
profiles of marker genes. Neighboring clusters in the cell type taxonomy with shared key markers are defined as types within the sub-
class, and clusters are named for key markers with a suffix for further discrimination.

To evaluate the clustering robustness, we compared the original SMART-seq cluster membership (Figure 1C; based on
scratch.hicat iterative clustering) with different data processing and clustering algorithms (either Ward’s hierarchical clustering (Fig-
ure S2D) or graph-based clustering by Seurat (Figure S2E)). For Ward’s hierarchical clustering (Ward, 1963), gene counts across
45,768 exons in single cells were log-normalized. Because dimensionality reduction on this dataset was spatially structured by
cell sequencing depth, we normalized for sequencing depth per cell by regressing out the log of the sum of the exon counts per
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cell. After normalization, PCA followed by t-SNE no longer arranged cells by sequencing depth. scipy.cluster.hierarchy.linkage
was then used to perform hierarchical clustering using the Ward variance minimization metric on the normalized counts, and the
hierarchical clustering was cut at 38 clusters. For graph-based clustering, SMART-seq gene counts were loaded into Seurat. After
log-normalization and data scaling (using default parameters), the top 2,000 highly variable genes were used (FindVariableGenes
function; selection.method = ‘vst’) to identify 44 clusters (FindClusters function; using 40 PCs given the highly variable genes and
a resolution of 4.5).

All retrogradely labeled SMART-seq cells were subjected to the same experimental and data processing and clustering with all
other quality control-passed single-cells. Clustering was performed blinded to the experimental source of retrogradely labeled cells.

10x Data analysis and clustering

All downstream analysis of Act-seq 10x scRNA-seq data was performed with R package Seurat (v3.0.3) (Butler et al., 2018; Satija
et al., 2015; Stuart et al., 2019), using default parameters unless specified (https://satijalab.org/seurat/). Briefly, after initial cell
filtering, genes expressed in fewer than 0.1% of total cells in each experiment were also removed, and all 10x gene expression
matrices from each experiment were loaded and merged into Seurat. Gene expressions of each cell were normalized by total number
of molecules, multiplied by a scale factor (10,000) per cell, and log-transformed (NormalizeData function). Then the expressions of
each gene were scaled (its mean/variance across cells is 0 and 1, respectively) and the proportion of mitochondrial UMIs was re-
gressed out (ScaleData function). Next, highly variable genes were identified (FindVariableGenes function; top 2,000 genes with
the highest standardized variance selected by selection.method = ‘vst’) and used as input for dimensionality reduction via principal
component analysis (PCA) after removing sex-specific genes (Ddx3y, Eif2s3y, Uty, Kdm5d, Xist, Tsix), immediate early genes (e.g.,
Fos, Fosl2, Junb, Egr1, Arc, Homer1; 139 genes in total from (Wu et al., 2017)), 30 retro-virus-induced genes (e.g., B2m, Bst2, Oasl2,
Ifit1), and 1,000 noise-sensitive genes (high abundance genes sensitive to technical noise; see also Table S2). The resulting PCs were
then used as input for clustering analysis (FindClusters function). Specifically, we performed iterative rounds of clustering and cell
selection (Figures S4A-S4H). For the initial 149,663 cells, we used 40 PCs to classify 35 unique clusters (a resolution of 0.6) to sepa-
rate neuronal cells from non-neuronal cells. We then selected the putative neuronal clusters (#0-21) for the 2"® round of clustering
analysis. 56 neuronal clusters were identified using 40 PCs (a resolution of 2.0) from 78,476 neurons to separate glutamatergic
VMH-in (inside VMH) neurons from GABAergic VMH-out (outside VMH) neurons. The final round of clustering analysis was performed
given 41,385 VMH neurons (#1-23), and 29 VMH clusters were identified using 40 PCs (a resolution of 1.6; Figures 4C—4E). Clustering
robustness for VMH clusters was evaluated by varying the parameters (number of PCs: 30-60; resolution: 1-2), and cluster identi-
fication was robust across the range of PCs and resolutions. For VMH clusters, top 10 differentially expressed genes were computed
by FindAllMarkers function (min.pct = 0.25, logfc.threshold = 0.25; Figure S4L).

To compare the expression level of Fos in each resident-intruder assay with control in whole VMHVI clusters (Figure 5B; 14,763
cells from 10x VMH cluster #2-17; only cells from male mice were included), we calculated p-values after multiple comparison
correction across behaviors and clusters (using 3-way ANOVA and Bonferroni post hoc test). We also performed the same analysis
using only cells from M-M social interaction tests (“M-M”; aggression and two M-M ClI tests) or M-F social interaction tests (“M-F”;
mating and two M-F Cl tests) samples in the 6 Esr1 clusters (#3-8; Figure 5C; 3,972, 11,094, and 4,865 cells from control, M-M, and
M-F, respectively). For 7 selected VMHVI clusters (Esr1_4, Esr1_5, Esr1_6, Esr1_7, Nup62cl, DIk1_1, and DIk1_4; showing strong Fos
inductions in Figure 5B), 1) pairwise comparisons between each social behavior exhibiting significant differences in Fos expression
(Figure S5A; after multiple comparison correction), and 2) differential IEG expression analysis (for 139 IEGs; see Table S2) using
Seurat (a likelihood ratio test (McDavid et al., 2013) by FindMarkers function) to identify significantly upregulated (average fold change
> 2 and FDR < 0.05) IEGs in each behavior compared to control (Figure S5B) were performed. For each VMHUvI cluster, the number of
IEGs significantly induced (average fold change > 2 and FDR < 0.05) during each social behavior compared to control was also
computed (Figure 5E).

seqFISH Data analysis and clustering
The smFISH counts for each gene were normalized by Z-scoring within each brain section, and for imaging ROlIs that covered the
same portion of VMHUvI, their spatial coordinates were integrated into a common coordinate system. Based on Nissl-stained images,
VMH and its subdivisions (VMHvI or VMHc) were identified, and cells were assigned to one of the major anatomic regions (VMHuvlI,
VMHc and VMH-out). For 4,686 cells in VMHVI, their gene expression matrix was loaded into Seurat, PCA and clustering was per-
formed (using 40 PCs and a resolution of 3.4 in FindClusters). Among initial 29 clusters, we filtered out 2 clusters that showed
very low expression levels of all genes and are mostly located nearby the boundary of the ROls. The dendrogram for final 27 clusters
(4,497 cells) was constructed based on the average distance between clusters in PCA space (BuildClusterTree function; Figure 2B).
To establish correspondence between scRNA-seq and seqFISH clusters, we computed the pairwise Pearson’s correlation coef-
ficient between the expression patterns of 58 seqFISH genes in SMART-seq (3,824 cells) and seqFISH (4,497 cells) VMHvI dataset
(using corrcoef function in MATLAB). We then identified the seqFISH clusters that were significantly correlated with SMART-seq clus-
ters (p < 0.05), and whose correlation coefficients were greater than the median value of bootstrap replicates (r > 0.35). Among these,
the seqFISH clusters most strongly correlated with each scRNA-seq cluster are marked by red squares (Figure 2C). 23 out of 27 seq-
FISH clusters corresponded to one or multiple SMART-seq clusters, and the pairwise correlation between these seqFISH clusters
and scRNA-seq subclasses showed a clear diagonal relationship (Figure 2C).
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MetaNeighbor analysis

To identify the set of genes that highly predict each of the 7 major Act-seq clusters identified in VMHvI (Esr1_4, Esr1_5, Esr1_6,
Esr1_7, Nup62cl, DIk1_1, and Dlk1_4), we calculated AUROC (Area Under Receiver-Operator Characteristics Curve) scores using
MetaNeighbor as described previously (Crow et al., 2018; Paul et al., 2017). Briefly, we inputted ~500 HGNC gene families (Paul
et al., 2017) and a gene expression matrix for each of the 7 clusters (7,632 cells only from male mice), with their cell type identities
(and a single experiment labeling only) to MetaNeighbor function. Output AUROC scores reflect the probability of a correct assign-
ment of cell types based on a given set of genes, when making a single binary choice, using randomized labels (AUROC ~0.5) as
control (see Table S3).

Canonical correlation analysis (CCA) with SMART-seq and 10x datasets

To integrate the two different scRNA-seq datasets, their shared sources of variation were identified by Seurat CCA alignment (Butler
et al., 2018; Stuart et al., 2019). Because the 10x data contained a large number of contaminating cells outside of VMH, in order
to make a fair comparison, only cells from VMH clusters were considered from each dataset (3,824 cells from SMART-seq clusters
#20-46; 41,385 cells from 10x). Specifically, after data preprocessing (log-normalization, data scaling for each gene, and detecting
variable genes) on SMART-seq data in Seurat, we selected the top 2,000 genes with the highest dispersion (variance to mean ratio)
from each dataset. We took the union of these two resulting gene sets (2,338 in total) as input to identify the pairwise correspon-
dences between single cells across two datasets, called anchors (FindintegrationAnchors function). We then used these anchors
to integrate the two datasets together (IntegrateData function), performed a joint clustering on these aligned embeddings (FindClus-
ters function; resolution of 1.9), yielding 31 clusters (referred to as “Joint Clusters (CCA)”; Figures 6A and S7C). Lastly, differentially
expressed genes that were conserved across datasets were identified (FindConservedMarkers function), and a dendrogram was
built using build_dend function in scrattch.hicat based on cluster median expression profiles of marker genes (Figure 6l).

DATA AND CODE AVAILABILITY

Data analysis and visualization software

The accession number for the scRNA-seq data reported in this paper is https://doi.org/10.17632/ypx3sw2f7c.1 (Mendeley Data).
Analysis and visualization of transcriptomic data were performed using MATLAB (version 2017a) and R v.3.3.0 and greater, assisted
by the Rstudio IDE (Integrated Development Environment for R v.1.1.442; https://rstudio.com/) as well as the following R packages:
cowplot v.0.9.2 (https://rdrr.io/cran/cowplot/), dendextend v.1.5.269, dplyr v.0.7.4 (https://dplyr.tidyverse.org/), feather v0.3.1
(https://rdrr.io/cran/feather/), ggbeeswarm v.0.6.0 (https://cran.r-project.org/web/packages/ggbeeswarm/index.html), ggExtra
v.0.8 (https://rdrr.io/cran/ggExtra/), ggplot2 v.2.2.170, ggrepel v.0.7.0 (https://cran.r-project.org/web/packages/ggrepel/vignettes/
ggrepel.html), googlesheets v.0.2.2 (hitps://cran.r-project.org/web/packages/googlesheets/vignettes/basic-usage.html), gridExtra
v.2.3 (https://cran.r-project.org/web/packages/gridExtra/index.html), Hmisc v.4.1-1 (https://cran.r-project.org/web/packages/
Hmisc/index.html), igraph v.1.2.1 (https://www.rdocumentation.org/packages/igraph/versions/1.2.1), limma v.3.30.1366,71, Matrix
v.1.2-12 (https://rdrr.io/rforge/Matrix/), matrixStats v.0.53.1 (https://cran.rstudio.com/web/packages/matrixStats/index.html), pals
v.1.5 (https://rdrr.io/cran/pals/), purrr v.0.2.4 (https://purrr.tidyverse.org/), pvclust v.2.0-0 (http://stat.sys.i.kyoto-u.ac.jp/prog/
pvclust/), reshape2 v.1.4.2 (https://www.statmethods.net/management/reshape.html), Rphenograph v.0.99.1 (https://rdrr.io/
github/JinmiaoChenLab/Rphenograph/), Rtsne v.0.14. (https://cran.r-project.org/web/packages/Rtsne/citation.html), Seurat
v.3.0.3, viridis v.0.5.0 (https://rdrr.io/cran/viridisLite/man/viridis.html), and xIsx v.0.5.7 (https://cran.r-project.org/web/packages/
xIsx/index.html).

Code availability

An R package for iterative clustering (scrattch.hicat) is available on GitHub at https://github.com/Alleninstitute/scrattch.hicat. All
MATLAB and R scripts used in this manuscript are available on reasonable request.

Cell 179, 713-728.e1-e7, October 17, 2019 e7


https://doi.org/10.17632/ypx3sw2f7c.1
https://rstudio.com/
https://rdrr.io/cran/cowplot/
https://dplyr.tidyverse.org/
https://rdrr.io/cran/feather/
https://cran.r-project.org/web/packages/ggbeeswarm/index.html
https://rdrr.io/cran/ggExtra/
https://cran.r-project.org/web/packages/ggrepel/vignettes/ggrepel.html
https://cran.r-project.org/web/packages/ggrepel/vignettes/ggrepel.html
https://cran.r-project.org/web/packages/googlesheets/vignettes/basic-usage.html
https://cran.r-project.org/web/packages/gridExtra/index.html
https://cran.r-project.org/web/packages/Hmisc/index.html
https://cran.r-project.org/web/packages/Hmisc/index.html
https://www.rdocumentation.org/packages/igraph/versions/1.2.1
https://rdrr.io/rforge/Matrix/
https://cran.rstudio.com/web/packages/matrixStats/index.html
https://rdrr.io/cran/pals/
https://purrr.tidyverse.org/
http://stat.sys.i.kyoto-u.ac.jp/prog/pvclust/
http://stat.sys.i.kyoto-u.ac.jp/prog/pvclust/
https://www.statmethods.net/management/reshape.html
https://rdrr.io/github/JinmiaoChenLab/Rphenograph/
https://rdrr.io/github/JinmiaoChenLab/Rphenograph/
https://cran.r-project.org/web/packages/Rtsne/citation.html
https://rdrr.io/cran/viridisLite/man/viridis.html
https://cran.r-project.org/web/packages/xlsx/index.html
https://cran.r-project.org/web/packages/xlsx/index.html
https://github.com/AllenInstitute/scrattch.hicat

A

< Kim et al >

0.7‘7‘nm

~_ 7

(1) Sampling density
- ~2.1 x 10° neurons/mm?
(2) Brain regions included
-#of nuclei: 4
- VMH (except dm), LH, Arc, Tu

L
0.5mm / hemisphere

(1) Sampling density
- ~2.7 x 10° neurons/mm?
(2) Brain regions included
-#of nuclei : 19
- MPN/MPA, LPO, VLPO/VMPO, HDB,
BAC/BNST, AvPe, Pe, PaAP, PVH,
SCN, SHy, MnPO, PVA, PS, StHy, OT

< Moffitt et al (2018) >

B Cre x Aireporter —» Microdissection in slices & Single-cell susp —  Fluor ated cell sorting (FACS) —> Single-cell RNA-seq
Oxtr-Cre x Ai14 Oxtr-Cre x Ai110 ——saaan
{Nr5a1} { Ai14(tdT) } i CDNA amp.
Oxtr Ai110(NeonGreen) = (SMART-seq v4)
[
3 Tagmentation
= — (Nextera XT)
e “atomate. """ NeonGreen NGS (lllumina HiSeq2500)
174(3)
C [ o B NrsatCre m E r
[ oxtrCre Bl Naive + Behavior Nrsa1  Oxtr  Vglut2 (ait4orait10)  Others
Bl WT(AI4 or Ai110) = 362 343 155
) (4) @
" Vglut2-Cre Il Exp. + Behavior 622 68
3 B Otners Naive + Behavior (10) @
S
= 225 279
2) @
Exp. + Behavior :g)z
210 1112 19
) an 1)
FU I n~rsat-Cre
: il
g5 [1 oxt-cre
22
gz Vglut2-Cre
o 2 L
28 c L Il WT (414 or Ai110)
2 W Il others
12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
Cluster no
G | Anterior H Posterior | H 100 Bl Nr5ai-Cre
E Oxtr-Cre
- = 80
2
S 2 60
= 8
< h
M % 40
& S
e s
< ®
] Anterior Posterior
o
-
=
<
x
S
x
(¢}
| i L
6 4574 cells

NLBRO6A B0 ,D

RO

DRPPPPRADO DPPRN RPN DD O WD PP

Cluster no.

g ————

Top 10 Marker Genes

Expression (z-scored)

21012

(legend on next page)



Figure S1. SMART-Seq scRNA-Seq Sample Info, Related to Figure 1 and Table S1

(A) Schematic diagrams illustrating relative size of region analyzed in this study versus POR (Moffitt et al., 2018) (see also Table S1).

(B) Overview of sample collection protocol for SMART-seq. Two main Cre recombinase lines (Nr5a1 and Oxtr) were crossed with Cre-dependent reporter mice
(Ai14 or Ai110) for cell labeling. A region including the lower half of VMH was manually micro-dissected from acute brain slices (yellow circle in the epifluorescence
image). Microdissected tissue was treated with protease and triturated to generate a single-cell suspension. Single cells were isolated by FACS (fluorescence-
activated cell sorting) with optimized gates (high reporter fluorescence and low DAPI). mRNAs in each cell were reverse-transcribed, and their full-length cDNAs
were amplified using SMART-seq v4. Sequencing libraries were prepared by Nextera XT (lllumina), and sequenced on an lllumina HiSeq 2500.

(C) Bar plot showing proportion of cells sequenced from each Cre line in each sex (n = 537 cells from six females; n = 4,037 cells from 48 males).

(D and E) Distribution of sequenced cells from male mice according to animal pre-treatment (sexually naive versus experienced; + Behavior, Resident-Intruder
test; or retrograde labeling) prior to sample collection (D). Table (E) summarizes Cre lines used for each pre-treatment.

(F) Stacked bar plot showing proportion of cells sequenced from each Cre line in 46 SMART-seq clusters.

(G) Images showing distribution of cells in anterior versus posterior VMHvI in two Cre lines, Nr5a1, and Oxtr, crossed with Ai110.

(H) Quantifications of data in (G), relative to Nissl.

(I-K) Sequencing depth (I), mean mapping percentages in each category of sequence (J), and number of genes detected per cell (K) indicated for each SMART-
seq cluster. Data (I and K) are represented as median with interquartile range.

(L) Heatmap showing relative expression of marker genes exhibiting differential expression across clusters.
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Figure S2. Robustness of SMART-Seq Clusters, Related to Figure 1

(A-C) Co-clustering frequency matrix grouped by clusters (A), confusion scores color-coded (low-blue, high-red) onto t-SNE plot (B), and constellation diagram
based on t-SNE plot (C) are shown. Confusion score is a metric showing how confidently each cell is assigned to its cluster (low score = high confidence). In (C),
cells are considered as intermediates (lines joining two clusters; only displayed if they have more than 2 cells) if their confusion scores are above a threshold (0.9);
number represented by line (n = 340 cells). Remaining cells are core cells in each cluster (disc size; n = 4,234 cells).

(D and E) Dot plots show comparisons of cluster membership based on scrattch.hicat iterative clustering (Figure 1C) with Ward’s hierarchical clustering (D) or
using Seurat (graph-based clustering; E).
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Figure S3. Iterative Clustering of Whole seqFISH Data with Region-Specific Marker Genes, Related to Figure 2

(A) Examples of seqFISH images (maximum intensity Z-projections) for 11 region-specific marker genes. Scale bars, 100 um (inset).

(B-E) Iterative unbiased clustering of whole seqFISH data (including all segmented cells; n = 23,050). (B and D) Initial clustering was performed and clusters were
assigned as inhibitory (left; nine clusters), intermediate (middle; six clusters), or excitatory with VMH markers (right; eight clusters) identities (B), based on the
expression of region-specific marker genes (S/c32a1, Gad1, Gad2, Six3, Slc17a6, Fezf1, Nrbal, C1ql2, Rreb1, DIk1, Gpr83, Sema3c, and Gldn). A second round
of clustering was performed on all excitatory neurons with VMH markers, and clusters were assigned as “Neurons w/ VMHdm/c markers” or “Neurons w/ VMHvI
markers” (D), based on the expression of region-specific marker genes (Nr5a1, C1ql2, Rreb1, Six3, Ldb2, Foxp2, DIk1, Arhgap36, Ecel1, Gldn, Gpc3, Sema3c,
Adarb2, Gpr83, Npy2r, Satb2, Nts, and Nup62cl). (C and E) Stacked bar plots showing proportion of cells from each anatomical location (VMH-out, VMHdm/c,
VMHUvI) onto broad seqFISH cluster categories (inhibitory, intermediate, and VMH excitatory in C; VMHdm/c and VMHVI in E; upper), and vice versa (lower).
(F) Heatmap showing average expression (Z scored) of marker genes in seqFISH or scRNA-seq (SMART-seq) data, in each region. (G) Left, overall correlation
between SMART-seq and seqFISH marker expression, by region; right, significance of correlation (white, p > 0.05).
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Figure S4. 10x scRNA-Seq Sample Statistics, Related to Figure 4

(A-H) Iterative clustering. After filtering out doublets or noise cells (A), initial clustering was performed with remaining QC-qualified cells (B). (C) Clusters were
assigned either neuronal (red, green, or blue) or non-neuronal (gray or brown) identities, based on expression of marker genes. (D and E) A second round of
clustering was performed on all neuronal cells (enclosed by purple in B; color-coded according to initial clustering on t-SNE in D). (E) Clusters were assigned as
VMH-in (green/blue) or VMH-out (red/brown) based on the expression of known markers (F; see also Figure 1B). Glutamatergic (blue bars) or GABAergic (red bars)
clusters are indicated below violin plots in (F) based on the expression level of Vglut2 (Slc17a6) and Vgat (Slc32a1), respectively. (G and H) In a third round of
clustering, VMH-in neurons (enclosed by green in E; color-coded on t-SNE plot in G according to cluster identity in F) were further classified into 29 clusters (see
Figure 4C).

(1) Number of mice and cells sampled for 10x scRNA-seq analysis, and their percentages at each successive stage of iterative clustering (bracket below). Mice are
categorized by behavioral assays run for Act-seq just before sample collection. “Plain” indicates animals taken directly from home cage in housing room;
“control” indicates animals taken after moving home cage from housing to experimental room.

(J and K) Comparisons of number of genes (J) and unique molecular identifiers (UMIs) detected per cell (K), among broad cell type categories (solid black line
indicating median).

(L) Heatmap showing single-cell expression levels of the top 10 most differentially expressed genes in each VMH cluster.
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Figure S5. Expression Patterns of IEGs in Behaviorally Relevant Clusters, Related to Figure 5

(A) Pairwise comparisons between behaviors exhibiting significant differences in Fos expression (colored squares), for seven major Act-seq clusters; y axis,
higher levels of Fos (red) during behavior; x axis, lower levels (blue; control animals included). For example, cluster DIk1_4 shows significantly higher Fos
expression, compared to control, during two social fear assays but Fos levels during social fear from single-housed mice, social fear (S) are also significantly
higher than during all other behaviors, including social fear from group-housed mice, Social Fear (G).

(B) Scatterplots for the seven clusters in (A) showing expression level of different IEGs. Red dots indicate IEGs with fold change >2 (x axis cut-off) and FDR <0.05 (y
axis cut-off; blue dashed lines), compared with control, for each indicated cluster and behavior assay (among 139 IEGs; see also Table S2).
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Figure S6. Comparisons of Differentially Expressed Genes between Behaviorally Relevant Clusters, Related to Figure 5 and Table S3

(A) Distribution of AUROC (area under receiver-operator characteristics curve) values for each of ~500 HGNC (HUGO Genome Nomenclature Committee) gene
families, calculated using MetaNeighbor, for each major Act-seq cluster (see Figure 5). AUROC score reflects the probability of correctly identifying a given cluster
(originally identified using entire gene set), using only members of that family of genes to perform clustering. Datapoints below red horizontal dashed line represent
gene families who members cannot identify clusters better than chance (AUROC = 0.5). Box-whisker plots indicate median, interquartile range, and 5"-95'"
percentiles of the distribution, respectively. Only outlier points are indicated.

(legend continued on next page)



(B) Individual AUROC scores for specific gene families of interest. Note the high scores for the I-set domain-containing subset of Ig superfamily genes.
(C-G) Violin plots show the relative expression levels of differentially expressed genes in gene families having high AUROC scores among the major Act-seq
clusters: (C) cell-adhesion molecules,(D) ion channels, (E) neurotransmitter and neuromodulator receptors, (F) neuropeptides and vesicle release proteins, (G)

transcription factors; see also Table S3).
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Figure S7. Comparison of SMART-Seq versus 10x Clusters Using Canonical Correlation Analysis (CCA), Related to Figure 6
(A and B) t-SNE plots of all VMH cells (n = 45,005) combining SMART-seq (dark red; n = 3,824) and 10x (dark blue; n = 41,181) before (A) and after (B) CCA

alignment.

(C) Joint CCA clusters are labeled on t-SNE plots following alignment.
(D and E) Dot plots comparing cluster membership in joint CCA clusters (x axis) with either SMART-seq (D) or 10x (E) clusters (y axis).

(F) Bar graph showing distribution of cells from SMART-seq (non-Retro-seq cells only; n = 2,756) and 10x datasets across joint CCA clusters.

(G) “River plots” illustrating how SMART-seq (left) and 10x (right) clusters are mapped onto joint CCA clusters (middle).

(H) Bar graphs showing relative proportions of cells in each CCA cluster expressing marker genes for the four major VMH classes identified here.
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